
LATEX TikZposter

Isosurface Extraction in a
Simple C/C++ Library

Jonathan Glines, with undergraduate advisor Dr. John Edwards
Idaho State University, College of Science and Engineering

Isosurface Extraction in a
Simple C/C++ Library

Jonathan Glines, with undergraduate advisor Dr. John Edwards
Idaho State University, College of Science and Engineering

Isosurface Extraction
Many applications, such as medical imaging, mathematical visualization, and artifi-
cial terrain generation, require the generation of isosurfaces from sample data. An
isosurface in three dimensions is simply the surface contour of a three-dimensional
scalar field for a given contour value. These surface contours are analogous to the
contour lines that we are familiar with from geological maps that represent elevation.
The process of isousface extraction begins with a scalar field function f : R3 7→ R.
This function might be defined by empirical data, such as samples from a CT scan, or
by a mathematical formula. It is assumed that this function is relatively continuous
and that it does not oscillate faster than the resolution we are sampling at (to satisfy
the Nyquist limit).
Once a scalar field function has been selected, an isosurface value s ∈ R is also se-
lected. This isosurface value is analogous to a specific contour elevation in a geological
elevation map. While the value s can in principle be any real number, it is often zero
in practice. This is because we can easily manipulate the scalar field function f by
adding a constant offset.
The isosurface itself is defined as the set of points S := {x : f (x) = s}. The ultimate
goal of isosurface extraction is to generate a triangle mesh representing S.

Original Marching Cubes

With the scalar field function f in hand, we can readily generate a lattice of sample
values. The original marching cubes algorithm, along with most of its variations,
considers one voxel cube (i.e. eight samples arranged in a cube) from this sample
lattice at a time. From the eight sample values in this voxel, we compute an 8-bit
index according to the samples that are above or below the isosurface. The primary
innovation of the marching cubes algorithm is the 28 = 256 entry lookup table that
enable us to quickly generate vertex positions and triangles for our isosurface mesh.

Accounting for Ambiguity

The original marching cubes algorithm as described by Lorensen and Cline uses 15
equivalence classes to generate the lookup tables. It was shown early in the use of
marching cubes that certain functions, such as those with saddle points, could expose
ambiguities in the way marching cubes was originally described. More advanced
treatments of the algorithm, such as Chernyaev’s Marching Cubes 33 and Nielson’s
Asymptotic Decider, use additional equivalence classes that resolve these ambiguities.

Dual Marching Cubes

The dual of the marching cubes algorithm is easiest to understand by looking at
the popular voxel game Minecraft, since cube meshes generated by Minecraft are
topologically the same as any dual marching cubes mesh. The algorithm that gener-
ates Minecraft-style meshes, called “cuberille,” does not perform any interpolating or
smoothing. More advanced dual methods will ”relax”or ”smooth”the vertex positions
of the cuberille mesh to produce a mesh much closer to the actual isosurface.

Transvoxel Algorithm

The Transvoxel isosurface extraction algorithm sets itself apart from ordinary march-
ing cubes by allowing seamless transitions between half and full resolution samples.
This algorithm was developed by Eric Lengyel in his PhD dissertation titled “Tran-
sition Cells for Dynamic Multiresolution Marching Cubes.”

Cascading Transition Voxels

We are working to generalize the Transvoxel algorithm for transitioning between n
levels of detail within the adaptive sample space of an octree. We hope to apply this
new algorithm to our research on generalized Voronoi diagram computation.

73 Transition Cell Cases

Implementation

We have implemented a number of these isosurface extraction algorithms in an easy-
to-use library. The result is a C/C++ library we call libmc. We are developing
libmc in parallel with our other undergraduate projects that should benefit from
an isosurface extraction library, such as LIDAR mapping and generalized Voronoi
diagram computation.
libmc is still in the early stages of development. Source code for the library is avail-
able on GitHub at the following URL: https://github.com/auntieNeo/libmc

Example Output

Fig. 1: Original Marching Cubes

Fig. 3: Cuberille

Fig. 2: Marching Cubes Patch

Fig. 4: Nielson’s Dual Marching Cubes

Contact

I can be reached at glinjona@isu.edu. I also have a personal web page at
http://glines.net.
My research advisor, Dr. John Edwards, keeps a faculty page at the URL
http://www2.cose.isu.edu/~edwajohn/ and can be contacted via email at
edwajohn@isu.edu.

https://github.com/auntieNeo/libmc
mailto:glinjona@isu.edu
http://glines.net
http://www2.cose.isu.edu/~edwajohn/
mailto:edwajohn@isu.edu

